The Voyager spacecraft are three-axis stabilized systems that use celestial or gyro referenced attitude control to maintain pointing of the high-gain antennas toward Earth. The prime mission science payload consisted of 10 instruments (11 investigations including radio science).
The Imaging Science Subsystem, made up of a wide angle and a narrow angle camera, is a modified version of the slow scan vidicon camera designs that were used in the earlier Mariner flights. The Imaging Science Subsystem consists of two television-type cameras, each with 8 filters in a commandable Filter Wheel mounted in front of the vidicons. One has a low resolution 200 mm wide-angle lens with an aperture of f/3 (Wide Angle Camera), while the other uses a higher resolution 1500 mm narrow-angle f/8.5 lens (Narrow Angle Camera).
Unlike the other onboard instruments, operation of the cameras is not autonomous, but is controlled by an imaging parameter table residing in one of the spacecraft computers, the Flight Data Subsystem (FDS).
The computer command subsystem (CCS) provides sequencing and control functions. The CCS contains fixed routines such as command decoding and fault detection and corrective routines, antenna pointing information, and spacecraft sequencing information. The Voyager spacecraft have three RCA 1802 CPUs running at 6.4 MHz. These CPUs sent to space were operating at full military specification temperatures (-55 to +125 °C).
The Attitude and Articulation Control Subsystem (AACS) controls the spacecraft orientation, maintains the pointing of the high-gain antenna towards Earth, controls attitude maneuvers, and positions the scan platform.
Uplink communications is via S band (16-bit/s command rate) while an X band transmitter provides downlink telemetry at 160 bit/s normally and 1.4 kbit/s for playback of high-rate plasma wave data. All data is transmitted from and received at the spacecraft via the 3.7-meter high-gain antenna (HGA).
Myspace Layouts at Pimp-My-Profile.com / Blue home - Image Hosting
I changed my profile with help from pYzam